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Generating memory-e�cient imperative datastructures from systolic programsR�esum�e : Le g�en�eration de programmes imp�eratifs �a partir de sp�eci�cationssystoliques exige un mod�ele de m�emorisation e�cace pour repr�esenter les don-n�ees utilis�ees dans la version �a assignation unique du programme source. Nousd�ecrivons une nouvelle m�ethode pour la g�en�eration de structures de donn�ees,destin�ee �a la compilation de programmes systoliques pour des architectures pa-rall�eles �a m�emoire distribu�ee. Notre m�ethode est bas�ee sur les propri�et�es math�e-matiques des programmes systoliques, et consiste en un ensemble de transfor-mations alg�ebriques �el�ementaires. Avec ces transformations, la taille totale desstructures de donn�ees peut être optimis�ee, ce qui permet de g�en�erer un code tr�ese�cace en taille m�emoire. La m�ethode a �et�e impl�ement�ee dans un compilateurexp�erimental pour le languageAlpha, actuellement en cours de d�eveloppement.Mots-cl�e : programmation parall�ele, architectures systoliques, architectures �am�emoire distribu�ee
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Memory-e�cient data structures for systolic programs 11 IntroductionSince its introduction in 1982 ([Kung82],) the concept of systolic array com-mands a still growing interest. The research carried out into this topic at Irisa([Quin83], [Robe86], [QuVa88], [GMQS89], [Maur89], [MQRS90], [CLMQ90])lead to the design of a declarative language for systolic array description, calledAlpha, and of the corresponding program transformation environment. Theprogramming environment, called Alpha du Centaur ([GMQS89],) is builton the top of the Centaur system ([Borr88]) and inherits its expandability, allo-wing new program transformations to be easily added. In its current form, thisenvironment is basically aimed at the design of dedicated VLSI chips.A large availability of \conventional" parallel computers suggested to useAlpha as the input language for a parallel program generator. Programmedthis way, a distributed-memory parallel computer can be used to validate sys-tolic architectures and to experiment with various parallel algorithms that canbe obtained from a given speci�cation. Moreover, by carefully designing thecompiler it is also possible to use it as a performance evaluation tool, for bothrunning time and memory utilization. The iPSC/2 hypercube from Intel instal-led at Irisa appeared as a suitable target for code generation, thus leading to theinvestigation of a real compiler, intended as a part of the Alpha du Centaurenvironment.Choosing Alpha as input language gives numerous advantages: given theunderlying mathematical model | a�ne recurrence equations, or AREs | thedependencies are local and regular, the input programs are single-assignment,and the partitioning is described in a very natural way. As we consider only non-parametrized programs ([MQRS90],) that is, programs whose size is staticallyde�ned, the set of dependencies is entirely de�ned at compile time.Moreover, alldependence functions are a�ne, allowing simple algebraic methods to be usedin the compiling process.The generation of data structures for the target program is a challengingproblem: the systolic programs used as input are single-assignment, thus requi-ring an excessive amount of memory and dramatically restricting the maximumsize of treatable problems if they are directly rewritten into single-assignmentimperative programs. Hence, the data structure generator must carry out twoactivities: de�ne the arrays corresponding to every local variable of the inputprogram, and reduce the size of these arrays while preserving the correctnessof the target program. We chose the memory usage as the only quantitativecriterion of the optimization process because the expected improvements canreach several orders of magnitude.Optimizing data structures can be carried out in two complementary ways:one can only transform (\reduce") the unoptimized array associated with a givenAlpha variable, or search for a set of applicable source-to-source transforma-tions of this variable, then reduce the arrays associated with every variable obtai-ned by means of these transformations. These two approaches can be combined
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2 Zbigniew Chamskiand an analysis of the dependence functions allows applicable transformationsto be computed using a constructive method.This paper is organized as follows: section 2 contains vocabulary and hypo-theses. Section 3 introduces the problems appearing in data structure generationon an Alpha program example used throughout the paper. Section 4 gives asimplemeans of generating unoptimized data structures. Section 5 then presentsthe concept of \variable reduction", allowing a direct optimization of arrays com-puted using the method from section 4. Section 6 de�nes two source-to-sourcetransformations of Alpha programs useful in optimizing variable images. Fi-nally, we give an overview of the current status of the data structure generatorand a comparison of our results with previous research.NotationsLetN denote the set of nonnegative integers, Z denote the set of relative integersand Z/pZ denote the set of equivalence classes modulo p of elements of Z. Byconvention, Z/0Z = Z.Let null(v) denote the position of the last null coordinate of a vector v inthe current basis.2 Vocabulary and hypotheses2.1 VocabularyAs this report simultaneously addresses issues related to systolic arrays and toimperative parallel programming, it seems useful to de�ne a unique and non-ambiguous vocabulary for the rest of the paper.2.1.1 Alpha languageA domain (also called \spatial domain") is a �nite convex polyhedron of Zn de�-ned by a �nite set of a�ne inequalities (constraints). The notation is { <indices> | <constraints> }.A variable is a morphism of a domain into a set of values. This set is some-times referred to as \domain of values", as opposed to \spatial domain". Thereare three basic sets of values: integers, reals and booleans. By extension, thetype of a variable is the type of its values.An instance A(z) of a variable A is its value at a given point z of thecorresponding spatial domain.A dependence function is an a�ne morphism of a spatial domain into ano-ther. The expression A:(z ! D(z)) takes at point z the value of A(D(z)). Wesay that there is a dependence D on A.An equation de�nes the relations between instances of (possibly di�erent)variables. An equation consists of a list of variable names, and of an expressionde�ning the values of instances of left-hand side (LHS) variables at di�erent
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Memory-e�cient data structures for systolic programs 3points of their domain. The right-hand side (RHS) expression can depend onthe point of the LHS domain, meaning a restriction of the corresponding subex-pression to a subdomain. This is expressed using the case construct (see theexample programs in the next section.)A variable is called input variable if it appears only in RHS expressions. Alocal variable appears both on LHS and on RHS of equations (possibly distinct.)An output variable appears only on LHS of an equation.A timing function is an a�ne function from a domain into a totally orderedset of integer points. The image of a point by a timing function is called instantof execution. An Alpha program is said to be computable by a given timingfunction if for every de�nition-use pair the instant of de�nition precedes theinstant of use.2.1.2 Imperative parallel programmingA loop is an iterative instruction, totally de�ned by giving a loop index, a lowerbound , an upper bound , and a sequence of instructions called loop body . Theinstructions of the loop body are executed for all successive integer values of theloop index from the lower bound up to the upper bound.The loop body can contain other loops. Two loops belonging to the sameloop body have disjoint index sets. Consider the following Pascal example:for i := 0 to m dobegin...for j := 1 to i doA[i] := i+j ;...for j := i+1 to n doB[j] := j-i ;...end ;The loop on index i is said to be the outer loop, whereas the loops on j aresaid to be inner loops. This structure, that we will call nested loop sequence,should be distinguished from the nested loops (used mainly in the parallelizationof FORTRAN programs,) in which a loop body is either another loop or asequence of statements containing no loops.An iteration is a particular execution of the loop body. It is characterized bythe current value of the associated loop index, and by the values of loop indicesof outer loops. The vector of loop index values (in nesting order) characterizinga given iteration is called iteration vector .An elementary instruction is an assignment or a communication instruction.An elementary operation is a particular execution of an elementary instruction.
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4 Zbigniew ChamskiIt is totally de�ned by giving the corresponding elementary instruction and aniteration vector.There is a dependence ([Kuck78]) between elementary operations op1 andop2 if the following conditions are all satis�ed:i) both operation access the same memory location,ii) program semantics depends on the order of execution of these operations,iii) for the results to be correct, op1 must be executed before op2.There is a 
ow dependence (also called data dependence) between op1 andop2 if op1 produces a value used by op2. There is an antidependence between op1and op2 if op1 reads a memory location modi�ed by op2. There is an outputdependence between op1 and op2 if op1 modi�es a memory location furthermodi�ed by op2.2.2 AssumptionsAlpha programs must be computable by a multidimensional timing function,common to all local variables and de�ned by the ascending lexicographical orderof domain points restricted to temporal indices. All local variables are supposedto be de�ned on the same index space.Alpha programs can be partitioned. If the case arises, the partitioning isintended for a �xed-size, p-dimensional grid. It corresponds to the decompo-sition of the domains by p families of equally spaced, canonical hyperplanesof dimension n � 1 (i.e., hyperplanes de�ned by exactly one equation of theform indexi = constant). A non-partitioned Alpha program expressed in a n-dimensional index space will be expressed in a n + p-dimensional index spaceafter partitioning. By convention, the �rst p indices in a partitioned programare supposed to be spatial coordinates.The target system of the compiler consists of a host computer and a net-work of processor whose logical topology is a p-dimensional grid. Each processorworks sequentially and is the only one to access its memory. The network it-self operates in the SPMD1 mode with a unique program for all processors,eventually containing conditionals on processor numbers.The control structures used to express an Alpha program are nested loopsequences, whose iteration spaces matches the union of domains of all localvariables of the Alpha program. The value of an instance A(z) is computed byan assignment operation A[...] := ... whose iteration vector is z.1Single Program stream, Multiple Data streams.
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Memory-e�cient data structures for systolic programs 53 The data structure generation problemThe study of an example will help understanding problems that arise duringdata structure generation. The following Alpha programs are an abstractionof a relaxation algorithm ([Tsen89].) The reader not familiar with the Alphalanguage can refer to the beginning of the previous section whenever needed.Let us de�ne the meaning of the Alpha programs shown below. For thesake of simplicity, there is no convergence test in the programs, as our mainconcern is in data dependences, not in the algorithm itself. For the same reason,we don't bother about boundary handling. In the program initial SOR, indexk is the iterate index, while indices i and j are location indices. At iteration k,an element A(k; i; j) is computed using the element A(k � 1; i; j) and its fourneighbours A(k�1; i�1; j), A(k�1; i; j�1),A(k�1; i; j+1) and A(k�1; i+1; j),all computed at iteration k � 1. Implicitly, the loops in the target program willbe nested in the order (k; i; j), with k being the index of the outermost one.The initial values of A are read on the host from variable a. After 100 steps ofrelaxation, the result is sent to the host and stored in variable res.system initial_SOR(a : {i,j | 1<=i<=512; 1<=j<=512} of real)returns(res : {i,j | 1<=i<=512; 1<=j<=512} of real);varA : {k,i,j | 0<=k<=25; 1<=i<=512; 1<=j<=512} of real;letA = case{k,i,j|k=0} : a.(k,i,j -> i,j);{k,i,j|511>=i>=2;511>=j>=2;25>=k>=1} :(A.(k,i,j->k-1,i-1,j )+A.(k,i,j->k-1,i, j-1)+A.(k,i,j->k-1,i+1,j )+A.(k,i,j->k-1,i, j+1)) / 2.(k,i,j->)- A.(k,i,j->k-1,i,j) ;-- boundary operations should come here ...esac;res = A.(i,j->25,i,j) ;tel;The program partitioned SOR corresponds to the previous one after par-titioning for a linear array of four processors. Data are distributed by blocksof 128 adjacent columns of the original matrix. The new index p is interpretedas the processor number, while the meaning of indices k, i and j remains un-changed. Communication operations introduced by the partitioning imply anextension of the case structure, de�ning the source of the datum to be received.
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6 Zbigniew Chamskisystem partitioned_SOR(a : {i,j | 1<=i<=512; 1<=j<=512} of real)returns(res : {i,j | 1<=i<=512; 1<=j<=512} of real);varA : {p,k,i,j | 1<=p<=4; 0<=k<=100; 1<=i<=512; 128p-127<=j<=128p} of real;letA = case{p,k,i,j|k=0} : a.(p,k,i,j -> i,j);-- calculations without communication{p,k,i,j|2<=i<=511;128p-126<=j<=128p-1;1<=k} :(A.(p,k,i,j->p,k-1,i-1,j )+A.(p,k,i,j->p,k-1,i, j-1)+A.(p,k,i,j->p,k-1,i+1,j )+A.(p,k,i,j->p,k-1,i, j+1)) / 2.(p,k,i,j->)- A.(p,k,i,j->p,k-1,i,j) ;-- receiving a datum from the "predecessor"{p,k,i,j|2<=p;2<=i<=511;128p-127=j;1<=k} :(A.(p,k,i,j->p, k-1,i-1,j )+A.(p,k,i,j->p-1,k-1,i, j-1)+A.(p,k,i,j->p, k-1,i+1,j )+A.(p,k,i,j->p, k-1,i, j+1)) / 2.(p,k,i,j->)- A.(p,k,i,j->p,k-1,i,j) ;-- receiving a datum from the "successor"{p,k,i,j|p<=3;2<=i<=511;j=128p-1;1<=k} :(A.(p,k,i,j->p, k-1,i-1,j )+A.(p,k,i,j->p, k-1,i, j-1)+A.(p,k,i,j->p, k-1,i+1,j )+A.(p,k,i,j->p+1,k-1,i, j+1)) / 2.(p,k,i,j->)- A.(p,k,i,j->p,k-1,i,j) ;-- we do not bother about domain boundaries ...esac;res = case{i,j| 1<=j<=128} : A.(i,j->1,25,i,j) ;{i,j|129<=j<=256} : A.(i,j->2,25,i,j) ;{i,j|257<=j<=384} : A.(i,j->3,25,i,j) ;{i,j|385<=j<=512} : A.(i,j->4,25,i,j) ;esac;tel;A straightforward method of generating data structures corresponding tothe A variable of program initial SOR is to associate an array element with
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Memory-e�cient data structures for systolic programs 7every instance (i.e., element) of A. In this case, the corresponding C languagedeclaration will befloat A[101][512][512];Clearly, this solution is far from optimal, as once calculated, the values areheld in memory until the execution ends, whereas they become useless aftera bounded delay. Given the implicit sequencing, and restricting the analysisto assignment operations, we can say that the value calculated at the point(p; i; j; k) is successively used by calculations carried out at points (p; k + 1; i�1; j), (p; k + 1; i; j � 1), (p; k + 1; i; j), (p; k + 1; i; j + 1) and (p; k + 1; i+ 1; j),in this order, and that this value will not be used after this last reference. Inother words, after evaluating (p; k + 1; i+ 1; j) the memory location associatedwith the instance A(p; k; i; j) can be released and possibly used to hold anotherinstance of A.From this observation we can deduce the set of all instances calculated beforea given instant t and which will be used at or after t. Let us call lifetime of aninstance the delay v between its calculation and its last use. Let vmax be themaximumof all lifetimes of instances of A. Then at an instant t, all the instancescalculated at or after the instant t� vmax must be held in memory. As we shallsee, the locality of dependences inherent to the Alpha language implies theexistence of an upper bound of the maximum lifetime for a given variable.The set of preserved instances being bounded, we must de�ne its shape.As it has to be identi�ed with an imperative array, the choice depends on thecharacteristics of the target language. In most cases, array bounds must be in-dependent and statically de�ned, enforcing the use of independent constraints,each relating to exactly one dimension. In such context, transformations of ins-tance sets can be de�ned as compositions of independent transformations onsingle dimensions.With the above assumptions, the sets of useful instances can be identi�edwith imperative arrays and their elementary transformations will be meaningfulin the imperative context. Two of them are of special interest, given their alge-braic properties: a mere suppression of a dimension (see �g. 1,) and the circular(alias \modulo") handling of a limited number of elements along a dimension(�g. 2.)The section 5 shows how to characterize and compute these transformationsin a uni�ed way using a simple mathematical model.4 Unoptimized data structuresAn unoptimized memory image of an Alpha variable V is a data structure imVof the target language such that there is an injective morphism of the instancesof V into the set of elements of imV. If V is partitioned, the corresponding data



www.manaraa.com

8 Zbigniew Chamski
Linear arrayTwo-dimensional arrayFigure 1: Suppression of a dimensionstructure imV will be distributed on the network according to a scheme com-patible with the partitioning relation of the Alpha variable, i.e., if an instanceV (z) is associated with processor index p, then the corresponding element ofimV will also be mapped onto processor p.Given the constraints of the target languages, the index sets of arrays canbe identi�ed with rectangle parallelepipeds of appropriate dimension and size.Thus, arrays themselves can be identi�ed with Alpha variables of appropriatetype and whose domains are rectangle parallelepipeds. This bijection gives asimple means of generating an array corresponding to a non-partitioned Alphavariable.The unicity of the target program implies a unique data structure declara-tion. This declaration speci�es in a generic form the part of the array that willbe mapped to a given processor. The hypothesis on the partitioning schemes ofaccepted Alpha programs ensures that the partitioning of an Alpha variableis a valid partitioning for the corresponding array.With such a partitioning scheme, the array corresponding to a slice of thepartitioned variable can be identi�ed with the rectangle hull of this slice, even-tually translated. As lower bounds of the partitioned index are di�erent for anytwo distinct processors, a translation is needed unless the target language allowslower bounds of the arrays to be explicitly de�ned (e.g., a translation is neededin C, where lower bounds are implicitly null.)Example 1:Consider the A variable from theAlpha program partitioned SORfrom section 3. The partitioning relation for A is shown in �gure 3.In C, the array corresponding to the A variable will be declared asfloat A[101][512][128];
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Memory-e�cient data structures for systolic programs 9
Two-dimensional arrayhaving more than four lines

A(0,?)A(1,?)A(2,?)A(3,?)A(4,?)A(5,?)A(6,?)A(7,?). . . Two-dimensional array with four lineshandled according to a "modulo 4" schemeA(0,?),A(4,?),. . .A(1,?),A(5,?),. . .A(2,?),A(6,?),. . .A(3,?),A(7,?),. . .Figure 2: Circular handling of a dimension
jprocessor numberp4321 1 128 256 384 512 partitioned index128p - 127 <= j <= 128pFigure 3: Constant-thickness slicing
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10 Zbigniew ChamskiMoreover, one will have to handle the translation on the origin during codegeneration.5 Variable reductionThe optimization of memory images of Alpha variables is aimed at the mi-nimization of a criterion characterizing the cost of the execution of the targetprogram. In this study, the only optimization criterion will be the total memoryspace needed to hold the imperative images of local variables appearing in agiven Alpha program. Other criteria can also be used, but they are beyond thescope of this paper (e.g., synchronization overhead in shared-memory compu-ters, or the execution time overhead due to additional assignment operations.)Two complementary approaches to optimization problem can be distingui-shed: a direct transformation of unoptimized data structures, without modifyingthe Alpha program, and a source-to-source rewriting of the input program fol-lowed by the generation and the optimization of the corresponding data struc-tures. This section is devoted to the former approach. The direct optimizationcan be done only by reducing the number of required memory locations (hencethe name \variable reduction",) implying multiple modi�cations of some or allof them. Therefore, the target program will no longer be single-assignment, andwill contain additional dependences between elementary operations.These dependences can be of two kinds: either antidependences, or outputdependences. Output dependences appear only between two assignment opera-tions and will only cause problems when their execution order will be unknown.There is no memory locations common to two distinct processors, hence outputdependences can only appear between operations executed by the same proces-sor. Then a su�cient condition of output dependence preservation is that theorder of assignment operations be the same in the Alpha program and in thetarget program. Between distinct iterations, it is enforced by the control struc-ture generation scheme and by the operation mode of the processor network(see section 2.) Inside an iteration there is no sequencing de�ned in the inputprogram, as all the calculations at a given point are supposed to be carried outconcurrently. The proper intra-iteration sequencing must therefore be enforcedby the code generator.The antidependences correspond to the case sketched brie
y in the introduc-tory example: all read accesses to a value must be �nished before modifying thisvalue. In the case of distributed-memory computers it is necessary and su�cientto ensure antidependence respect separately on each processor. Therefore, withthe hypotheses from section 2 it is legal to restrict the study to non-partitionedprograms, as it has to be done separately for each slice of the variable. Meanw-hile, the resulting optimization must be common to all slices because the targetprogram is unique for all processors.
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Memory-e�cient data structures for systolic programs 115.1 Principle of variable reductionWe search for an algebraic method of determining the minimum size of thememory image of a local Alpha variable. The transformation has to be a�nein order to preserve the properties of the dependence functions and it shouldmatch the properties of target language arrays. Also, it should be de�ned bymeans of a composition of appropriate elementary a�ne functions.Let us consider an Alpha program complying with the hypotheses fromsection 2 and a local variable V of this program. Let n be the number of dimen-sions of the domain of V . Let B = (ei)1�i�n be the canonical basis of the indexspace of local variables and let � be the strict ascending lexicographical order.The choice of the basis is motivated by the use of canonical constraints in thede�nition of target arrays. By identifying the timing function with the order �,we have 8i; 1 � i � n� 1; 8k 2N ei � kei+1and e1 � e2 � . . . � en�1 � en:Let D denote the set of dependence functions on V and d the maximumdelay between the production of and the last reference to an instance of V , asde�ned by d = maxfz0 � z j z 2 dom(V ); Di 2 D; z0 2 D�1i zg:A composition of elementary array transformations (see section 3) will becalled a reduction function (RF.) A formal de�nition isDe�nition 1 Let (ki)1�i�n be a collection of nonnegative integers. A reduc-tion function (RF) is an a�ne morphism M : Zn ! Z/k1Z�Z/k2Z� . . .�Z/knZ de�ned byM (z) = (z mod k1; z mod k2; . . . ; z mod kn)If ki equals 0, the corresponding coordinate is left unchanged, that is, noreduction is done along ei. If ki equals 1, the coordinate is suppressed (it isreplaced by 0 for any value,) and �nally, if ki equals a constant k > 1, thecoordinate is mapped to its equivalence class modulo ki. The correspondingtransformation is the replacement of a set of contiguous values by exactly kicontiguous values handled in a circular way. Therefore, a reduction functionapplied to the rectangle hull of the domain of V determines the number ofdimensions and the bounds of the corresponding optimized array. It also de�nesthe access scheme to be used later during code generation.Unless trivial (all ki = 0), a reduction function is not injective, hence distinctpoints z and z0 of the domain of V will be mapped to the same element M (z)of the optimized array. It easy to see that this is the case if the di�erence z0� z
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12 Zbigniew Chamskiis an integer combination of kiei. These combinations can be viewed as delaysbetween two modi�cations of a memory location, expressed in terms of iterationvectors.Not all possible reduction functions allow to preserve loop-carried antidepen-dences. For the �nal program to be correct, one must ensure that the longestlifetime d of an instance of V is shorter than the shortest delay between two suc-cessive modi�cations of the corresponding memory location. We will call valida reduction function such that for every positive, nonnull vector v of its nulls-pace we have v � d. If a reduction function M is valid, then in the imperativeprogram in which the unoptimized array corresponding to V was replaced byits image by M , all loop-carried antidependences will be preserved.An elementary reduction function (ERF) is a reduction functionM such thatthere are unique integers k > 0 and r such that 8z; M (z) = (z1; . . . ; zr�1; zr mod k; zr+1; . . . ; zn).The integer k is called image factor. The canonical vector er de�nes the re-duction direction. By construction, any two ERFs whose reduction directionsare distinct can be composed in any order (the intersection of their nullspacesis f0g.) This result can be easily extended to any number of ERFs with distinctreduction directions.The commutativity of the composition of ERFs is also true for valid ERFs.Moreover, the composition of two valid ERFs whose reduction directions aredistinct is clearly valid: let Mk;r and Mk0;r0 be two valid ERFs such that r < r0.Since Mk0;r0 is valid and for all k, er � ker0 , Mk;r is also valid.In order to construct a valid elementary RF, we have to derive a constructivemethod from the de�nition of a valid reduction function. As we already saw, itis su�cient to ensure that the smallest positive vector of the nullspace of theRF be greater than the longest lifetime d of instances of V . Thus, the su�cientcondition for Mk;r to be valid is that we have ker � d � 0. This implies also anecessary condition, useful in establishing the existence of a valid ERF: for agiven coordinate r the preceding r � 1 coordinates of d must all be null. As aconsequence, there is no valid ERF other than identity for any coordinate of dfollowing the �rst nonnull one.The image factor (IF) is intended for evaluating the quantitative aspect ofvariable reduction. The IF of an elementary reduction function is the numberof array elements that are held in memory along the corresponding array di-mension. By extending the concept of the image factor to identity RFs (i.e.,for which no reduction is done), it is possible to de�ne the image factor of anyreduction function, be it elementary or not. Let the image factor of an identityelementary RF M0;r be the width of the rectangle hull of V along the corres-ponding dimension. Then for a given reduction function M , the product of theimage factors of all elementary RFs composingM (including identities) is equalto the size of the memory image of V optimized using M .We can now de�ne the optimality of an elementary reduction function interms of of the size of the optimized array. An ERF Mk;r is said to be minimalif there is no other ERFMk0;r valid for V and whose image factor is smaller, i.e.,
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Memory-e�cient data structures for systolic programs 13such that k0 < k. Thus, to construct a minimal ERF we must �nd k verifying(k � 1)er � d. As the image factor of a composed reduction function M isthe product of the image factor of all ERFs composing M , the composition ofminimal ERFs is also minimal. In particular, we have:Theorem 2 (construction of a minimal reduction function) Let V be a localvariable of an Alpha program, d = (d1; . . . ; dn) the longest lifetime of instancesof V , and k and r two integers satisfying:i) d� ker � 0,ii) null(d) = r � 1,iii) dr � k,iv) (k � 1)er � d.With these hypotheses, the reduction function M de�ned by M = Mk;r �M1;r�1 �M1;r�2 � . . . �M1;1 is valid for V and minimal.Proof: A non-trivial reduction can only be applied to coordinates 1 through r.As a minimal RF is a composition of minimal ERFs, we must choose the mini-mal ERF for any of the above coordinates. For every i satisfying 1 � i � r� 1,we have ei � d, hence the corresponding minimal ERFs are M1;i. For the rthcoordinate, the minimal ERF is Mk;r, hence the result.Let us see the application of this method on some examples.Example 2: Consider the Alpha program initial SOR from section 3. TheB basis is([1; 0; 0]; [0;1;0]; [0; 0;1]). The set D of dependence functions is f(k; i; j ! k �1; i; j); (k; i; j ! k � 1; i � 1; j); (k; i; j ! k � 1; i; j � 1); (k; i; j ! k � 1; i; j +1); (k; i; j ! k � 1; i � 1; j)g and the maximum lifetime of an instance of A is[1; 1; 0]. We obtain r = 1 and k = 2, hence the C declaration of the optimizedarray:float A[2][512][512];The declaration of the variable A from program partitioned SOR will onlydi�er in the number of elements along the last dimension (128 instead of 512).Thus, the memory space required for the image of A is now 50 times smallerthan before applying variable reduction.Target code outline: for both Alpha programs, the �rst coordinate of thearray element corresponding to a given instance of A is calculated by taking thevalue of index k modulo 2. The innermost loop of the imperative program willbe
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14 Zbigniew ChamskiA[k%2][i][j] = (A[(k-1)%2][i-1][j] + A[(k-1)%2][i][j-1] +A[(k-1)%2][i+1][j] + A[(k-1)%2][i][j+1]) / 2-A[(k-1)%2][i][j];Example 3: Consider the following convolution program,mapped to a lineararray of four processors (the processor p = 0 is a dummy one) :system convolution (a : { j | 1<=j<=16 } of integer;x : { i | i>=1 } of integer)returns (y : { i | i>=16 } of integer);varY : { p,i,j | 4>=p>=0 ; 4p>=j>=4p-3 ;i>=1 } of integer;letY = case{ p,i,j | j=0 } : 0 .(p,i,j->);{ p,i,j | 16>=j>=1 } :Y .(p,i,j->p,i,j-1) + a .(p,i,j->p,j) * x .(p,i,j->i-j+1);esac;y = Y .(i->4,i,16);tel;The p index being implicitly the spatial one, the temporal basis is ([1; 0]; [0;1]).The C declaration of the unoptimized array associated with Y is thenint Y[big_number][4];where big number is an arbitrary upper bound, depending on the amount ofmemory available for data. Given the dependence function (i; j ! i; j � 1), thelongest lifetime for variable Y is [0; 1] and we obtain� r = 2,� k = 1,thus reducing the initial array to a scalar; the new declaration isint Y;6 Source-to-source transformationsVariable reduction allows the transformation of the imperative image of anAlpha variable, but it is limited by the dependences on this variable (supposed
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Memory-e�cient data structures for systolic programs 15to be �xed). A more in-depth analysis of reduction rules shows the importanceof the lexicographical su�x of the maximum lifetime. If this su�x is strictlypositive, it forces to hold in memory a large amount of instances that will notbe used.Intuitively, the solution to this problem is to reduce the the maximum life-time in such a way that the su�x become negative or null. To do this, one hasto modify the dependence functions of the Alpha program, either by changingthe order of the evaluation of instances, or by introducing new variables to \de-compose" (cut) the dependence functions associated with the original variable.Both solutions can be easily formalized and correspond to transformationsused frequently when parallelizing sequential programs: the former is in factthe reversing of loop traversal order (ascending to descending or the opposite),whereas the second corresponds to the introduction of temporary variables.The use of these transformations in the context of the Alpha language isdiscussed below. The input information used to compute transformation para-meters is basically the same as for variable reduction, however, as it will beshown later, reversing loop traversal order requires more information on a par-ticular class of dependence functions.6.1 Dependence decompositionWith the same notations as in the preceding section, let us consider a localvariable V whose associated lifetime is of the form d = ker+d0 with er � d0 � 0.After variable reduction, the array associated with V has k + 1 elements in its�rst dimension (the �rst r � 1 coordinates have been removed,) thus forcingall the instances calculated between instants z � (k + 1)er and z to be held inmemory, whereas only those calculated after z � (ker + d0) will be really usedat or after z.By holding the \oldest" values in a new variable during the delay d0, wecan reduce the maximum lifetime of the instances of V : after a delay of kertheir values will be assigned to the instances of the auxiliary variable Vaux, thusimmediately freeing the corresponding memory locations.From the Alpha point view, this transformation is an extension of the ex-pression decomposition, but cannot be easily expressed using existing trans-formations. All the right-hand side occurrences of V such that the instancee�ectively used can be \older" than ker must be replaced by a conditional: if ata given point z, the instance used was calculated before z� ker , the occurrenceof V must replaced by the corresponding occurrence of Vaux; if not, it can beleaved as is.The auxiliary variable Vaux is de�ned as follows:� the domain of Vaux is given by dom(Vaux) = dom(V )\transl(dom(V ); ker),where \transl"(D; v) is the translation of the domain D by the vector v.� the type of Vaux is that of V ,



www.manaraa.com

16 Zbigniew Chamski� the equation de�ning Vaux is Vaux = V:(z ! z � ker).Such a de�nition introduces the problem of intra-iteration sequencing: thereis no straightforward ordering of assignments in the resulting loop body if boththe initial and the auxiliary variable were reduced using the corresponding mi-nimal reduction functions. This problem is a part of the more general loop bodysequencing problem, which must be solved during code generation (possiblyby introducing additional scalar variables to break intra-iteration dependencecycles).Example 4: After the dependence decomposition has been applied to thevariable A, the Alpha program initial SOR from section 3 has the followingform:system initial_SOR_decomposed (a : {i,j|i>=1;j>=1;512>=j;512>=i} of real)returns (res : {i,j|i>=1;j>=1;512>=j;512>=i} of real);varA_aux : {k,i,j|i>=1;k>=1;j>=2;510>=i;25>=k;511>=j} of real;A : {k,i,j|i>=1;k>=0;j>=1;512>=i;25>=k;512>=j} of real;letA_aux = A.(k,i,j->k-1,i,j);A = case{k,i,j|k=0} : a.(k,i,j->i,j);{k,i,j|i>=2;k>=1;j>=2;511>=i;25>=k;511>=j} :(A_aux.(k,i,j->k,i-1,j) + A_aux.(k,i,j->k,i,j-1) +A.(k,i,j->k-1,i+1,j) + A.(k,i,j->k-1,i,j+1)) / 2.(k,i,j->) -A.(k,i,j->k-1,i,j);esac;res = A.(i,j->25,i,j);tel;Without dependence decomposition, the minimal RF for A is characterized byr = 1 and k = 2 (see section 5). After applying dependence decomposition,there is no lifetime longer than [1; 0; 0] for any instance of A. Hence, the minimalreduction function for A is now characterized by r = 1 and k = 1, and the new Clanguage declaration of A isfloat A[512][512];The maximum lifetime of instances of Aaux is [0; 1; 0], hence the minimal RFfor Aaux is given by r = 2 and k = 1, and the corresponding C declaration willbefloat A_aux[512];If dependence decomposition was applied to the program partitioned SOR,the new declarations of A and A aux would be the same as for the program
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Memory-e�cient data structures for systolic programs 17initial SOR decomposed, excepted for the width of array slices along the lastdimension.In place of a three-dimensional array, we obtain now one two-dimensionaland one one-dimensional array, and the memory space required for the datastructures has been virtually reduced by a half (the size of A aux represents lessthan 0.2% of the space recovered by suppressing a part of the old A array.)6.2 Changing loop traversal orderThis transformation is based on a change of basis leading to the modi�cationof the d0 su�x of the maximum lifetime d. As we suppose ker � d � (k + 1)er,initially the minimal reduction function for V is MV = Mk+1;r �M1;r�1 � . . . �M1;1. By applying the dependence decomposition it is possible to further limitthe necessary memory space, as the array associated with the auxiliary variableVaux can be reduced using the reduction function MVaux =Mkr0 ;r0 �M1;r0�1 �. . . �M1;2 �M1;1 where r0 is the position of the �rst nonnull coordinate of d0,and kr0 satis�es kr0er0 � d0 � (kr0 � 1)er0 .The rth coordinate of the array associated with V cannot be reduced toless than k elements in any way, thus the further reduction of the memoryuse depends on the reduction of the image factor of MVaux. The d0 su�x beingstrictly positive, its �rst nonnull coordinate d0r0 is also positive. Then if we applyto the domain of V a change of basis in which the sign of the coordinate r0 isreversed, the su�x d0 will become strictly negative in the new basis B0. Thechange of basis is given byB = (e1; e2; . . . ; er0 ; . . . ; en) 7�! B0 = (e1; e2; . . . ;�er0 ; . . . ; en):This change of basis can, however, have undesirable e�ects if applied wi-thout precautions. If there are lifetimes t = (t1; t2; . . . ; tn) such that their r0{thcoordinates tr0 satisfy tr0 < �kr0 , then after the above change of basis the newdependences will generate longer lifetimes, thus requiring more memory spacethan before the transformation.So, the construction of the appropriate change of basis is subject to addi-tional conditions: if for each dependence function Di such that there are life-times t = (t1; t2; . . . ; tn) generated by Di and satisfying tr = k, the inequality�kr0 < tr0 holds, then the application of the change of basis T given byT : B = (e1; e2; . . . ; er0 ; . . . ; en) 7�! B0 = (e1; e2; . . . ;�er0 ; . . . ; en);to the domain of the variable V reduces the minimumtotal memory space requi-red by the optimized arrays associated with V and with its auxiliary variable.Example 5: The Gaussian elimination is a good example of application ofloop traversal order reversing. Consider the following Alpha program:



www.manaraa.com

18 Zbigniew Chamskisystem GAUSS (a : {i,j|i>=1;j>=1;20>=j;20>=i} of real;b : {i|20>=i;i>=1} of real)returns (u : {i,j|20>=j;i>=1;j>=i} of real;x : {i|20>=i;i>=1} of real);varA : {k,i,j|i>=1;k>=0;j>=1;j>=k;20>=i;21>=j;20>=k} of real;letA = case{k,i,j|k=0;20>=j;j>=1} : a.(k,i,j->i,j);{k,i,j|k=0;21=j} : b.(k,i,j->i);{k,i,j|j>=k;k>=1;k=i;20>=k;21>=j} :A.(k,i,j->k-1,i,j) / A.(k,i,j->k-1,k,k);{k,i,j|k>=1;i>=k+1;j>=k;20>=i;21>=j} :A.(k,i,j->k-1,i,j) -A.(k,i,j->k-1,i,k) / A.(k,i,j->k-1,k,k) *A.(k,i,j->k-1,k,j);esac;x = {i|20>=i;i>=1} : A.(i->i,i,21);u = {i,j|20>=j;i>=1;j>=i} : A.(i,j->i,i,j);tel;By noting 1 the unde�ned bounds (such as the extreme values in the dif-fusions,) the four dependence functions on A: D1 = (k; i; j ! k � 1; i; j), D2 =(k; i; j ! k � 1; k; k), D3 = (k; i; j ! k � 1; k; j) and D4 = (k; i; j ! k � 1; i; k)generate the following lifetimes:� D1: [1; 0; 0],� D2: [1; 0; 0] through [1;1;1],� D3: [1; 0; 0] through [1;1; 0],� D4: [1; 0; 0] through [1; 0;1].d equals [1;1;1] and the minimal reduction function for A is given by cho-sing r = 1 and k = 2. As the requirements for reversing loop traversal orderare clearly satis�ed, we can directly apply the change of basis (e1; e2; e3) 7�!(e1;�e2; e3). The new program issystem GAUSS_new(a : {i,j|j>=1;i>=1;20>=i;20>=j} of real;b : {i|20>=i;i>=1} of real)returns (u : {i,j|20>=j;i>=1;j>=i} of real;x : {i|20>=i;i>=1} of real);varA : {k,i,j|0>=i+1;k>=0;j>=1;j>=k;i+20>=0;21>=j;20>=k} of real;
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Memory-e�cient data structures for systolic programs 19letA = case{k,i,j|k=0;20>=j;j>=1} : a.(k,i,j->-i,j);{k,i,j|k=0;21=j} : b.(k,i,j->-i);{k,i,j|j>=k;k>=1;0=k+i;20>=k;21>=j} :A.(k,i,j->k-1,i,j) / A.(k,i,j->k-1,-k,k);{k,i,j|k>=1;0>=k+i+1;j>=k;i+20>=0;21>=j} :A.(k,i,j->k-1,i,j) -A.(k,i,j->k-1,i,k) / A.(k,i,j->k-1,-k,k) * A.(k,i,j->k-1,-k,j);esac;x = {i|20>=i;i>=1} : A.(i->i,-i,21);u = {i,j|20>=j;i>=1;j>=i} : A.(i,j->i,-i,j);tel;The new dependence functions are now D01 = (k; i; j 7! k � 1; i; j), D02 =(k; i; j 7! k � 1;�k; k), D03 = (k; i; j 7! k � 1;�k; j) and D04 = (k; i; j 7!k � 1; i; k). Thus, the new maximum lifetime d is [1; 0;1] instead of [1;1;1].Although one could decompose the dependences at this point, it can be easilyseen that once again we can apply a change of basis, as the program GAUSS newsatis�es the requirements for reversing loop traversal order. After this secondchange of basis, de�ned by (e1; e2; e3) 7�! (e1; e2;�e3) the maximum lifetime dwill be bounded by [1; 0; 0], thus suppressing the need for dependence decom-position.7 Current state and evolutionAn experimental Alpha compiler, called CFC (Control Flow Compiler) is cur-rently being designed. It is subdivided into two major modules: the data struc-tures generator, and the control structures (code) generator. In its current form,the data structures generator consists of a set of simple tools, integrated into theAlpha du Centaur environment. These tools are intended to verify the appli-cability of the source-to-source transformations, to generate unoptimized arraysassociated with local variables, and to apply variable reduction according to theresults of the dependence test.The analysis stage determines the maximum and minimum lifetimes of ins-tances of a given variable, and performs an analysis of this lifetime information.In particular, it identi�es the partitioning relations. Calculating minimum life-times in addition to the maximumlifetime appeared very useful when modifyingloop traversal order: although minimum lifetimes do not always match the as-sumptions from previous section, in practice it appeared to be the case for alarge number of problems, justifying the shortcut.The lifetime calculation algorithm is of linear complexity and is coded inLisp, whereas all other parts of the data structure generator were implemented
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20 Zbigniew Chamskias sets of semantical rules and compiled into Prolog programs using Centaur'ssemantics-oriented subsystem called TYPOL.The forthcoming extensions of the prototype generator consist of a built-independence decomposition transformation (by now, it has to be applied ma-nually,) and of the automation of the complete generation chain. Also, an adap-tation of the generator to shared-memory computers is being investigated.The data structure generator is only a part of the Alpha language compilerfor regular distributed-memory computers. As such, it will be integrated in thenear future into the complete compiling chain, still under development.8 DiscussionVery few work seems to be currently done on the generation of data structuresfrom systolic programs. There is a project aimed at the generation of imperativeparallel programs from systolic ones, managed by Dr. Megson at the Universityof Newcastle upon Tyne (Great Britain,) but to date no information has beenreleased on it. Nevertheless, this topic is related to some of the parallelizationtechniques introduced recently for the FORTRAN programs, such as the onesproposed by the PTRAN team at IBM ([Alle88]), and by Feautrier and Werth([RaFe91]). In these approaches one �rst generates a single-assignment programfrom the input FORTRAN code, then one searches for a more e�cient memoryutilization scheme.In PTRAN, a shared-memory model with dynamical loop scheduling is used,thus requiring the number of loop-carried dependences to be very low. In theapproach of Feautrier and Werth, the target is a distributed-memory computer,whose exact characteristics are hidden using the concept of virtual processors.Remote memory reads are allowed, requiring global synchronization (e.g., asequential loop) to ensure dependence preservation.In such a context it is necessary to take very conservative assumptions whenoptimizing expanded data structures (on an example program, Feautrier reportsa fourfold increase in memory requirements, when compared with the initial se-quential program.) Also, an in-depth analysis of the program dependences mustbe performed before generating the single-assignment intermediate program. Fi-nally, in both of the above-mentioned papers a large part of the research seemsto be devoted to the de�nition of program representations used to make depen-dence analysis and program rewriting easier.In our approach, no remote memory accesses are allowed, restricting inter-processor dependences are preserved by communication operations. Also, themapping of iterations to the target topology is given in the input program, re-quiring neither runtime overhead nor complex mapping functions. Eventually,the complexity of the reduction transformation is very low, as its de�nition isgiven in terms of lexicographical inequalities. The e�ciency of the variable re-duction is close to the optimizations one could perform if the target program
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Memory-e�cient data structures for systolic programs 21was sequential: the only limitations come form the fact that the variable reduc-tion is performed on a global basis, thus ignoring additional optimizations localto some processors.9 ConclusionThe three optimization methods presented in this paper allow very memory-e�cient data structures to be obtained when generating imperative programsfrom systolic speci�cations. They will be used in the complete Alpha compilerfor regular distributed-memory computers, permitting to expect (in long-termand for a class of problems) mathematical speci�cations to be a programminglanguage for these architectures.The methods presented in this paper fully bene�t from the major characte-ristics of the Alpha language: powerful theoretical basis, declarative semantics,and local, regular dependence functions. The characterization of the target ar-chitectures, although seeming restrictive, is very useful in de�ning optimizingtransformations which remain realistic for the real-life applications thanks totheir low complexity. The major drawback of the approach is that when redu-cing memory requirements, additional constraints on instruction sequencing areintroduced, thus increasing the complexity of the code generation process.AcknowledgementsI'm very grateful to my thesis' advisor, Dr. Patrice Quinton, who supervisedthis research. I would also thank Professor Paul Feautrier for many helpfuldiscussions we had on the optimization of data structures in parallelization ofFORTRAN programs.References[Alle88] F. Allen et al. A framework for determining useful parallelism.In International Conference on Supercomputing, pages 207{215, St.Malo, 1988.[Borr88] P. Borras, D. Cl�ement, Th. Despeyroux, J. Incerpi, G. Kahn, B.Lang, and V. Pascual. CENTAUR : the system. In ACM SIGSOFT'88, 1988.[CLMQ90] Z. Chamski, H. Le Verge, C. Mauras, and P. Quinton. Interactivedesign of parallel algorithms using the ALPHA du Centaur envi-ronment. In Int'l. Workshop on Compilers for Parallel Computers,pages 399{410, ENSMP/UPMC, Paris, France, December 1990.
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