ISSN 1166-8687

PUBLICATION
INTERNE
N° 621

Oszg/
&
As
@
(&
3

A
I~
N
2
<

MEMORY-EFFICIENT DATA STRUCTURES FOR

SYSTOLIC PROGRAMS

ZBIGNIEW CHAMSKI

P |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

www.manaraa.com



www.manharaa.com

o AJLb



» INSTITUT DE RECHERCHE EN  INFORMATIQUE ET SYSTEMES ALEATOIRES
I R I S A Campus de Beaulieu — 35042 Rennes Cedex — France

Tél. : (33) 99 84 71 00 — Fax : (33) 99 38 38 32

Memory-efficient data structures for systolic
programs

Zbigniew Chamski

Programme 1 — Architectures paralléles, bases de données, réseaux
et systémes distribués
Projet API

Publication interne n° 621 — Décembre 1991 — 22 pages

Abstract: Generating imperative programs from systolic specifications implies
the use of a memory-efficient model for representing data used in the original,
single-assignment problem. We present a new method of generating data struc-
tures, designed for use in systolic program compilers for distributed-memory
parallel computers. Our method is based on the mathematical properties of
systolic programs and consists of a set of algebraically defined elementary trans-
formations. Using these transformations, the total size of data structures can
be optimized, allowing very memory-efficient code to be produced. The method
has been implemented as a part of an experimental compiler of the ALPHA
language, currently under development.
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Generating memory-efficient imperative data
structures from systolic programs

Résumé : Le génération de programmes impératifs a partir de spécifications
systoliques exige un modéle de mémorisation efficace pour représenter les don-
nées utilisées dans la version a assignation unique du programme source. Nous
décrivons une nouvelle méthode pour la génération de structures de données,
destinée a la compilation de programmes systoliques pour des architectures pa-
ralleles & mémoire distribuée. Notre méthode est basée sur les propriétés mathé-
matiques des programmes systoliques, et consiste en un ensemble de transfor-
mations algébriques élémentaires. Avec ces transformations, la taille totale des
structures de données peut étre optimisée, ce qui permet de générer un code tres
efficace en taille mémoire. La méthode a été implémentée dans un compilateur
expérimental pour le language ALPHA, actuellement en cours de développement.
Mots-clé : programmation paralléle, architectures systoliques, architectures a
mémoire distribuée
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Memory-efficient data structures for systolic programs 1

1 Introduction

Since its introduction in 1982 ([Kung82],) the concept of systolic array com-
mands a still growing interest. The research carried out into this topic at Irisa
([Quin83], [Robe86], [QuVa88], [GMQS89], [Maurd9], [MQRS90], [CLMQ90])
lead to the design of a declarative language for systolic array description, called
AvrpHA, and of the corresponding program transformation environment. The
programming environment, called ALPHA DU CENTAUR ([GMQS89],) is built
on the top of the Centaur system ([Borr88]) and inherits its expandability, allo-
wing new program transformations to be easily added. In its current form, this
environment is basically aimed at the design of dedicated VLSI chips.

A large availability of “conventional” parallel computers suggested to use
ALPHA as the input language for a parallel program generator. Programmed
this way, a distributed-memory parallel computer can be used to validate sys-
tolic architectures and to experiment with various parallel algorithms that can
be obtained from a given specification. Moreover, by carefully designing the
compiler it is also possible to use it as a performance evaluation tool, for both
running time and memory utilization. The iPSC/2 hypercube from Intel instal-
led at Irisa appeared as a suitable target for code generation, thus leading to the
investigation of a real compiler, intended as a part of the ALPHA DU CENTAUR
environment.

Choosing ALPHA as input language gives numerous advantages: given the
underlying mathematical model — affine recurrence equations, or AREs — the
dependencies are local and regular, the input programs are single-assignment,
and the partitioning is described in a very natural way. As we consider only non-
parametrized programs ([MQRS90],) that is, programs whose size is statically
defined, the set of dependencies is entirely defined at compile time. Moreover, all
dependence functions are affine, allowing simple algebraic methods to be used
in the compiling process.

The generation of data structures for the target program is a challenging
problem: the systolic programs used as input are single-assignment, thus requi-
ring an excessive amount of memory and dramatically restricting the maximum
size of treatable problems if they are directly rewritten into single-assignment
imperative programs. Hence, the data structure generator must carry out two
activities: define the arrays corresponding to every local variable of the input
program, and reduce the size of these arrays while preserving the correctness
of the target program. We chose the memory usage as the only quantitative
criterion of the optimization process because the expected improvements can
reach several orders of magnitude.

Optimizing data structures can be carried out in two complementary ways:
one can only transform (“reduce”) the unoptimized array associated with a given
ALPHA variable, or search for a set of applicable source-to-source transforma-
tions of this variable, then reduce the arrays associated with every variable obtai-
ned by means of these transformations. These two approaches can be combined

www.manaraa.com



2 Zbigniew Chamski

and an analysis of the dependence functions allows applicable transformations
to be computed using a constructive method.

This paper is organized as follows: section 2 contains vocabulary and hypo-
theses. Section 3 introduces the problems appearing in data structure generation
on an ALPHA program example used throughout the paper. Section 4 gives a
simple means of generating unoptimized data structures. Section 5 then presents
the concept of “variable reduction” | allowing a direct optimization of arrays com-
puted using the method from section 4. Section 6 defines two source-to-source
transformations of ALPHA programs useful in optimizing variable images. Fi-
nally, we give an overview of the current status of the data structure generator
and a comparison of our results with previous research.

Notations

Let IN denote the set of nonnegative integers, Z denote the set of relative integers
and Z/pZ denote the set of equivalence classes modulo p of elements of Z. By
convention, Z/0Z = Z.

Let null(v) denote the position of the last null coordinate of a vector v in
the current basis.

2 Vocabulary and hypotheses

2.1 Vocabulary

As this report simultaneously addresses issues related to systolic arrays and to
imperative parallel programming, it seems useful to define a unique and non-
ambiguous vocabulary for the rest of the paper.

2.1.1 ALPHA language

A domain (also called “spatial domain”) is a finite convex polyhedron of Z™ defi-
ned by a finite set of affine inequalities (constraints). The notationis { <indices> | <constraints> }.

A wvariable 1s a morphism of a domain into a set of values. This set is some-
times referred to as “domain of values”, as opposed to “spatial domain”. There
are three basic sets of values: integers, reals and booleans. By extension, the
type of a variable is the type of its values.

An instance A(z) of a variable A is its value at a given point z of the
corresponding spatial domain.

A dependence function is an affine morphism of a spatial domain into ano-
ther. The expression A.(z — D(z)) takes at point z the value of A(D(z)). We
say that there is a dependence D on A.

An equation defines the relations between instances of (possibly different)
variables. An equation consists of a list of variable names, and of an expression
defining the values of instances of left-hand side (LHS) variables at different
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Memory-efficient data structures for systolic programs 3

points of their domain. The right-hand side (RHS) expression can depend on
the point of the LHS domain, meaning a restriction of the corresponding subex-
pression to a subdomain. This is expressed using the case construct (see the
example programs in the next section.)

A variable is called input variable if it appears only in RHS expressions. A
local variable appears both on LHS and on RHS of equations (possibly distinct.)
An output variable appears only on LHS of an equation.

A timing function is an affine function from a domain into a totally ordered
set of integer points. The image of a point by a timing function is called instant
of execution. An ALPHA program is said to be computable by a given timing
function if for every definition-use pair the instant of definition precedes the
instant of use.

2.1.2 Imperative parallel programming

A loop is an iterative instruction, totally defined by giving a loop indez, a lower
bound, an wupper bound, and a sequence of instructions called loop body. The
instructions of the loop body are executed for all successive integer values of the
loop index from the lower bound up to the upper bound.

The loop body can contain other loops. Two loops belonging to the same
loop body have disjoint index sets. Consider the following Pascal example:

for i := 0 to m do
begin
for j := 1 to 1 do
ATi] := i+j ;
for j := i+1 to n do
B[j1 := j-i ;
end ;

The loop on index i is said to be the outer loop, whereas the loops on j are
said to be inner loops. This structure, that we will call nested loop sequence,
should be distinguished from the nested loops (used mainly in the parallelization
of FORTRAN programs,) in which a loop body is either another loop or a
sequence of statements containing no loops.

An dteration is a particular execution of the loop body. It is characterized by
the current value of the associated loop index, and by the values of loop indices
of outer loops. The vector of loop index values (in nesting order) characterizing
a given iteration is called iteration vector.

An elementary instruction is an assignment or a communication instruction.
An elementary operation is a particular execution of an elementary instruction.
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4 Zbigniew Chamski

It is totally defined by giving the corresponding elementary instruction and an
iteration vector.

There is a dependence ([Kuck78]) between elementary operations opl and
op2 if the following conditions are all satisfied:

i) both operation access the same memory location,
i) program semantics depends on the order of execution of these operations,

ii1) for the results to be correct, opl must be executed before op2.

There is a flow dependence (also called data dependence) between op1l and
op2 if opl produces a value used by op2. There is an antidependence between opl
and op2 if opl reads a memory location modified by op2. There is an output
dependence between opl and op2 if opl modifies a memory location further
modified by op2.

2.2 Assumptions

ALPHA programs must be computable by a multidimensional timing function,
common to all local variables and defined by the ascending lexicographical order
of domain points restricted to temporal indices. All local variables are supposed
to be defined on the same index space.

ALPHA programs can be partitioned. If the case arises, the partitioning is
intended for a fixed-size, p-dimensional grid. It corresponds to the decompo-
sition of the domains by p families of equally spaced, canonical hyperplanes
of dimension n — 1 (i.e., hyperplanes defined by exactly one equation of the
form index; = constant). A non-partitioned ALPHA program expressed in a n-
dimensional index space will be expressed in a n 4+ p-dimensional index space
after partitioning. By convention, the first p indices in a partitioned program
are supposed to be spatial coordinates.

The target system of the compiler consists of a host computer and a net-
work of processor whose logical topology is a p-dimensional grid. Each processor
works sequentially and is the only one to access its memory. The network it-
self operates in the SPMD! mode with a unique program for all processors,
eventually containing conditionals on processor numbers.

The control structures used to express an ALPHA program are nested loop
sequences, whose iteration spaces matches the union of domains of all local
variables of the ALPHA program. The value of an instance A(z) is computed by
an assignment operation A[...] := ... whose iteration vector is z.

1Single Program stream, Multiple Data streams.
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Memory-efficient data structures for systolic programs 5

3 The data structure generation problem

The study of an example will help understanding problems that arise during
data structure generation. The following ALPHA programs are an abstraction
of a relaxation algorithm ([Tsen89].) The reader not familiar with the ALPHA
language can refer to the beginning of the previous section whenever needed.

Let us define the meaning of the ALPHA programs shown below. For the
sake of simplicity, there is no convergence test in the programs, as our main
concern is in data dependences, not in the algorithm itself. For the same reason,
we don’t bother about boundary handling. In the program initial SOR, index
k is the iterate index, while indices ¢ and j are location indices. At iteration k,
an element A(k, i, j) is computed using the element A(k — 1,4, j) and its four
neighbours A(k—1,i—1,7), A(k—1,4,7—1), A(k—1,4,j4+1) and A(k—1,i+1, j),
all computed at iteration & — 1. Implicitly, the loops in the target program will
be nested in the order (k,4,j), with & being the index of the outermost one.
The initial values of A are read on the host from variable a. After 100 steps of
relaxation, the result is sent to the host and stored in variable res.

system initial_SOR
(a @ {i,j | 1<=i<=512; 1<=j<=512} of real)

returns

(res : {i,j | 1<=i<=b512; 1<=j<=512} of real);
var

A : {k,i,j | 0<=k<=25; 1<=i<=512; 1<=j<=512} of real;
let

A = case

{k,1i,j1k=0} : a.(k,i,j -> 1i,3);
{k,i,jl511>=i>=2;511>=j>=2;25>=k>=1} :
(a.(k,i,j->k-1,i-1,j )
+A.(k,i,j—>k-1,1i, j-1)
+A.(k,1i,j->k-1,i+1,j )
+A.(k,1,j->k-1,1, j+1)) / 2.(k,i,j->)
- A.(k,1,j->k-1,1,3j) ;
-- boundary operations should come here ...
esac;

res = A.(i,j—>25,1i,3) ;
tel;

The program partitioned SOR corresponds to the previous one after par-
titioning for a linear array of four processors. Data are distributed by blocks
of 128 adjacent columns of the original matrix. The new index p is interpreted
as the processor number, while the meaning of indices k, ¢ and j remains un-
changed. Communication operations introduced by the partitioning imply an
extension of the case structure, defining the source of the datum to be received.
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system partitioned_SOR

(a @ {i,j | 1<=i<=512; 1<=j<=512} of real)

returns

(res : {i,j | 1<=i<=512; 1<=j<=512} of real);

var

A : {p,k,i,j | 1<=p<=4; 0<=k<=100; 1<=i<=512; 128p-127<=j<=128p} of real;

let
A = case

{p,k,i,j1k=0} : a.(p,k,i,j -> i,3);

—- calculations without communication

{p,k,i,jl2<=i<=511;128p-126<=j<=128p-1;1<=k} :
(A.(p,k,i,j->p,k-1,i-1,3 )
+A.(p,k,1,j->p,k-1,i, j-1)
+4.(p,k,1,j->p,k-1,i+1,3 )

+A-(P:k:i:j_>P:k_1:i:

- A-(P:k:i:j_>P:k_1:i,j)4

—-- receiving a datum from the "predecessor"
{p,k,i,jl2<=p;2<=i<=511;128p-127=7j;1<=k} :

(A.(p,k,i,j->p, k-1,i-1,j )
+4.(p,k,1,j->p-1,k-1,i, j-1)
+A.(p,k,1,j->p, k-1,i+1,j )
+A.(p,k,i,j->p, k-1,i, j+1)) / 2.(p,k,i,j->)
- A.(p,k,i,j->p,k-1,1,3) ;

—-- receiving a datum from the "successor"

{p,k,i,jlp<=3;2<=i<=511;j=128p-1;1<=k} :

(A.(p,k,i,j—>p, k-1,i-1,j )
+A.(p,k,i,j—>p, k-1,1, j—1)
+4.(p,k,1i,j->p, k-1,i+1,j )

+4.(p,k,1i,j->p+1,k-1,1,

- A-(P:k:i:j_>P:k_1:i,j)4

—-— we do not bother about domain boundaries ...

esac;

res = case

{i,jl 1<=j<=128%} :
{i,jl129<=j<=256} :
{i,jl257<=j<=384} :
{i,j1385<=j<=512} :

esac;
tel;

A.(i,3->1,25,1,3)
A.(i,3->2,25,1,j)
A.(i,3->3,25,1,j)
A.(i,j->4,25,i,3)

)
)
)

)

j+1)) / 2.(p,k,i,j—>)

j+1)) / 2.(p,k,i,j->)

A straightforward method of generating data structures corresponding to
the A variable of program initial SOR is to associate an array element with
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Memory-efficient data structures for systolic programs 7

every instance (i.e., element) of A. In this case, the corresponding C language
declaration will be

float A[101]1[512][512];

Clearly, this solution is far from optimal, as once calculated, the values are
held in memory until the execution ends, whereas they become useless after
a bounded delay. Given the implicit sequencing, and restricting the analysis
to assignment operations, we can say that the value calculated at the point
(p, 1,4, k) is successively used by calculations carried out at points (p, k+1,¢—
L), (pk+1,4,5—1), (pk+1,4,5), (p,k+1,i,7+1) and (p, k+ 1,4+ 1,7),
in this order, and that this value will not be used after this last reference. In
other words, after evaluating (p, k + 1,7+ 1, ) the memory location associated
with the instance A(p, k,i,j) can be released and possibly used to hold another
instance of A.

From this observation we can deduce the set of all instances calculated before
a given instant ¢ and which will be used at or after ¢. Let us call lifetime of an
instance the delay v between its calculation and its last use. Let vymqe be the
maximum of all lifetimes of instances of A. Then at an instant ¢, all the instances
calculated at or after the instant ¢ — vyqg must be held in memory. As we shall
see, the locality of dependences inherent to the ALPHA language implies the
existence of an upper bound of the maximum lifetime for a given variable.

The set of preserved instances being bounded, we must define its shape.
As 1t has to be 1dentified with an imperative array, the choice depends on the
characteristics of the target language. In most cases, array bounds must be in-
dependent and statically defined, enforcing the use of independent constraints,
each relating to exactly one dimension. In such context, transformations of ins-
tance sets can be defined as compositions of independent transformations on
single dimensions.

With the above assumptions, the sets of useful instances can be identified
with imperative arrays and their elementary transformations will be meaningful
in the imperative context. Two of them are of special interest, given their alge-
braic properties: a mere suppression of a dimension (see fig. 1,) and the circular
(alias “modulo”) handling of a limited number of elements along a dimension
(fig. 2.)

The section 5 shows how to characterize and compute these transformations
in a unified way using a simple mathematical model.

4 Unoptimized data structures
An unoptimized memory image of an ALPHA variable V' is a data structure imV

of the target language such that there is an injective morphism of the instances
of V into the set of elements of imV. If V' is partitioned, the corresponding data

www.manaraa.com



8 Zbigniew Chamski

Two-dimensional array Linear array

Figure 1: Suppression of a dimension

structure imV will be distributed on the network according to a scheme com-
patible with the partitioning relation of the ALPHA variable, i.e., if an instance
V(z) is associated with processor index p, then the corresponding element of
imV will also be mapped onto processor p.

Given the constraints of the target languages, the index sets of arrays can
be identified with rectangle parallelepipeds of appropriate dimension and size.
Thus, arrays themselves can be identified with ALPHA variables of appropriate
type and whose domains are rectangle parallelepipeds. This bijection gives a
simple means of generating an array corresponding to a non-partitioned ALPHA
variable.

The unicity of the target program implies a unique data structure declara-
tion. This declaration specifies in a generic form the part of the array that will
be mapped to a given processor. The hypothesis on the partitioning schemes of
accepted ALPHA programs ensures that the partitioning of an ALPHA variable
is a valid partitioning for the corresponding array.

With such a partitioning scheme, the array corresponding to a slice of the
partitioned variable can be identified with the rectangle hull of this slice, even-
tually translated. As lower bounds of the partitioned index are different for any
two distinct processors, a translation is needed unless the target language allows
lower bounds of the arrays to be explicitly defined (e.g., a translation is needed
in C, where lower bounds are implicitly null.)

Example 1: Consider the A variable from the ALPHA program partitioned_SOR
from section 3. The partitioning relation for A is shown in figure 3.

In C, the array corresponding to the A variable will be declared as

float A[101]1[512][128];
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A(0,%)
A(1,%)
A(2,%)
A(3,%)
A(4,%) A(0,%),A(4,%),. . .
A(5,%) A(1,%),A(5,%),. . .
A(6,%) A(2,%),A(6,%),. . .
A(7,%) A(3,%),A(T,%),. ..
Two-dimensional array Two-dimensional array with four lines
having more than four lines handled according to a "modulo 4” scheme

Figure 2: Circular handling of a dimension

processor number

P

4

7128p - 127 <= j <= 128p

partitioned index

Figure 3: Constant-thickness slicing
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10 Zbigniew Chamski

Moreover, one will have to handle the translation on the origin during code
generation. [

5 Variable reduction

The optimization of memory images of ALPHA variables is aimed at the mi-
nemization of a criterion characterizing the cost of the execution of the target
program. In this study, the only optimization criterion will be the total memory
space needed to hold the imperative images of local variables appearing in a
given ALPHA program. Other criteria can also be used, but they are beyond the
scope of this paper (e.g., synchronization overhead in shared-memory compu-
ters, or the execution time overhead due to additional assignment operations.)

Two complementary approaches to optimization problem can be distingui-
shed: a direct transformation of unoptimized data structures, without modifying
the ALPHA program, and a source-to-source rewriting of the input program fol-
lowed by the generation and the optimization of the corresponding data struc-
tures. This section 1s devoted to the former approach. The direct optimization
can be done only by reducing the number of required memory locations (hence
the name “variable reduction”,) implying multiple modifications of some or all
of them. Therefore, the target program will no longer be single-assignment, and
will contain additional dependences between elementary operations.

These dependences can be of two kinds: either antidependences, or output
dependences. Output dependences appear only between two assignment opera-
tions and will only cause problems when their execution order will be unknown.
There is no memory locations common to two distinct processors, hence output
dependences can only appear between operations executed by the same proces-
sor. Then a sufficient condition of output dependence preservation is that the
order of assignment operations be the same in the ALPHA program and in the
target program. Between distinct iterations, it is enforced by the control struc-
ture generation scheme and by the operation mode of the processor network
(see section 2.) Inside an iteration there is no sequencing defined in the input
program, as all the calculations at a given point are supposed to be carried out
concurrently. The proper intra-iteration sequencing must therefore be enforced
by the code generator.

The antidependences correspond to the case sketched briefly in the introduc-
tory example: all read accesses to a value must be finished before modifying this
value. In the case of distributed-memory computers it is necessary and sufficient
to ensure antidependence respect separately on each processor. Therefore, with
the hypotheses from section 2 it is legal to restrict the study to non-partitioned
programs, as it has to be done separately for each slice of the variable. Meanw-
hile, the resulting optimization must be common to all slices because the target
program is unique for all processors.

www.manaraa.com



Memory-efficient data structures for systolic programs 11

5.1 Principle of variable reduction

We search for an algebraic method of determining the minimum size of the
memory image of a local ALPHA variable. The transformation has to be affine
in order to preserve the properties of the dependence functions and it should
match the properties of target language arrays. Also, it should be defined by
means of a composition of appropriate elementary affine functions.

Let us consider an ALPHA program complying with the hypotheses from
section 2 and a local variable V' of this program. Let n be the number of dimen-
sions of the domain of V. Let B = (e;)1<i<n be the canonical basis of the index
space of local variables and let = be the strict ascending lexicographical order.
The choice of the basis is motivated by the use of canonical constraints in the
definition of target arrays. By identifying the timing function with the order =,
we have

Vi, 1<i1<n—1, VEkeEN e = keipr

bl

and
€1 == €2 > ... €Ep_1  €En.

Let D denote the set of dependence functions on V' and d the maximum
delay between the production of and the last reference to an instance of V, as

defined by
d=max{z — 2 |z € dom(V),D; €D,z € D7 '2}.

A composition of elementary array transformations (see section 3) will be
called a reduction function (RF.) A formal definition is

Definition 1 Let (ki)lgz’gn be a collection of nonnegative integers. A reduc-
tion function (RF) is an affine morphism M : Z" — Z/kiZ xZ/ksZ % ... X
Z/kp,Z defined by

M(z) = (z mod k1,2 mod ko, ... 2z mod ky)

If k; equals 0, the corresponding coordinate is left unchanged, that is, no
reduction is done along e;. If k; equals 1, the coordinate is suppressed (it is
replaced by 0 for any value,) and finally, if k; equals a constant k& > 1, the
coordinate is mapped to its equivalence class modulo k;. The corresponding
transformation 1s the replacement of a set of contiguous values by exactly k;
contiguous values handled in a circular way. Therefore, a reduction function
applied to the rectangle hull of the domain of V' determines the number of
dimensions and the bounds of the corresponding optimized array. It also defines
the access scheme to be used later during code generation.

Unless trivial (all £; = 0), a reduction function is not injective, hence distinct
points z and z* of the domain of V' will be mapped to the same element M (z)
of the optimized array. It easy to see that this is the case if the difference 2’ — z
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12 Zbigniew Chamski

is an integer combination of k;e;. These combinations can be viewed as delays
between two modifications of a memory location, expressed in terms of iteration
vectors.

Not all possible reduction functions allow to preserve loop-carried antidepen-
dences. For the final program to be correct, one must ensure that the longest
lifetime d of an instance of V is shorter than the shortest delay between two suc-
cessive modifications of the corresponding memory location. We will call valid
a reduction function such that for every positive, nonnull vector v of its nulls-
pace we have v = d. If a reduction function M is valid, then in the imperative
program in which the unoptimized array corresponding to V was replaced by
its image by M, all loop-carried antidependences will be preserved.

An elementary reduction function (ERF) is a reduction function M such that
there are unique integers & > 0 and r such that Vz, M(z) = (21,...,2,-1, 2 mod k, zr41, ..., 2n).
The integer k is called image factor. The canonical vector e, defines the re-
duction direction. By construction, any two ERFs whose reduction directions
are distinct can be composed in any order (the intersection of their nullspaces
is {0}.) This result can be easily extended to any number of ERFs with distinct
reduction directions.

The commutativity of the composition of ERFs is also true for valid ERFs.
Moreover, the composition of two valid ERFs whose reduction directions are
distinct is clearly valid: let My » and My ,+ be two valid ERFs such that » < /.
Since My o is valid and for all &k, e, > ke, My, is also valid.

In order to construct a valid elementary RF, we have to derive a constructive
method from the definition of a valid reduction function. As we already saw, it
is sufficient to ensure that the smallest positive vector of the nullspace of the
RF be greater than the longest lifetime d of instances of V. Thus, the sufficient
condition for My , to be valid is that we have ke, — d > 0. This implies also a
necessary condition, useful in establishing the existence of a valid ERF: for a
given coordinate r the preceding r — 1 coordinates of d must all be null. As a
consequence, there is no valid ERF other than identity for any coordinate of d
following the first nonnull one.

The image factor (IF) is intended for evaluating the quantitative aspect of
variable reduction. The IF of an elementary reduction function is the number
of array elements that are held in memory along the corresponding array di-
mension. By extending the concept of the image factor to identity RFs (i.e.,
for which no reduction is done), it is possible to define the image factor of any
reduction function, be it elementary or not. Let the image factor of an identity
elementary RF My, be the width of the rectangle hull of V along the corres-
ponding dimension. Then for a given reduction function M, the product of the
image factors of all elementary RFs composing M (including identities) is equal
to the size of the memory image of V optimized using M.

We can now define the optimality of an elementary reduction function in
terms of of the size of the optimized array. An ERF My, , is said to be minimal
if there is no other ERF Mj: . valid for V' and whose image factor is smaller, i.e.,
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such that ¥’ < k. Thus, to construct a minimal ERF we must find %k verifying
(k — e, < d. As the image factor of a composed reduction function M is
the product of the image factor of all ERFs composing M, the composition of
minimal ERFs is also minimal. In particular, we have:

Theorem 2 (construction of a minimal reduction function) Let V be a local
variable of an ALPHA program, d = (dy, ..., dy) the longest lifetime of instances
of V., and k and r two integers satisfying:

i) d—ke, =0,

i) null(d) = r — 1,
i) d, <k,

i) (k—1)e, < d.

With these hypotheses, the reduction function M defined by M = My, o
Mi,—10Mir_20...0 M s valid for V and mimimal.

Proof: A non-trivial reduction can only be applied to coordinates 1 through r.
As a minimal RF is a composition of minimal ERFs, we must choose the mini-
mal ERF for any of the above coordinates. For every ¢ satisfying 1 < ¢ <r—1,
we have ¢; >~ d, hence the corresponding minimal ERFs are M, ;. For the »**
coordinate, the minimal ERF is My, ., hence the result. [

Let us see the application of this method on some examples.

Example 2: Consider the ALPHA program initial_SOR from section 3. The
B basis 1s
([1,0,0],[0,1,0],[0,0,1]). The set D of dependence functions is {(k,i,j — k —
1,4,7),(kyi, g — k—1,i—1,7),(k, 5,5 = k—1,4,5— 1), (k,i,j — k—1,4,5+
1), (k,i,j — k—1,i—1,7)} and the maximum lifetime of an instance of A is
[1,1,0]. We obtain » = 1 and k = 2, hence the C declaration of the optimized
array:

float A[2][512][512];

The declaration of the variable A from program partitioned_SOR will only
differ in the number of elements along the last dimension (128 instead of 512).
Thus, the memory space required for the image of A is now 50 times smaller
than before applying variable reduction.

Target code outline: for both ALPHA programs, the first coordinate of the
array element corresponding to a given instance of A is calculated by taking the
value of index k£ modulo 2. The innermost loop of the imperative program will

be
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ATk%2]1[i]1 03] = (AL(x-1)%21[i-11[03] + AL(x-1)%2]1[i1[j-1] +
AL(k-1)%2]1 [i+11[j] + AL(k-1)%21[11[j+11) / 2
-A[(k-1)%2]1[i1[3];

Example 3: Consider the following convolution program, mapped to a linear
array of four processors (the processor p = 0 is a dummy one) :

system convolution (a : { j | 1<=j<=16 } of integer;
x ¢ {1i] i>=1 } of integer)
returns (y : { i | i>=16 } of integer);
var
Y: {p,i,j | 4>=p>=0 ; 4p>=j>=4p-3 ;
i>=1 } of integer;

let
Y = case
{p,i,j | =0} : 0 .(p,i,j—>);
{p,i,j | 16>=j>=1 3} :
Y .(p,i,j->p,1i,j-1) + a .(p,i,j->p,j) * x .(p,i,j->i-j+1);
esac;
y =Y .(i->4,i,16);
tel;

The p index being implicitly the spatial one, the temporal basis is ([1, 0], [0, 1]).
The C declaration of the unoptimized array associated with Y is then

int Y[big_number][4];

where big number is an arbitrary upper bound, depending on the amount of
memory available for data. Given the dependence function (¢,j — ¢,j — 1), the
longest lifetime for variable Y is [0, 1] and we obtain

o r=2
o k=1,
thus reducing the initial array to a scalar; the new declaration is

int Y;

6 Source-to-source transformations

Variable reduction allows the transformation of the imperative image of an
ALPHA variable, but it is limited by the dependences on this variable (supposed
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to be fixed). A more in-depth analysis of reduction rules shows the importance
of the lexicographical suffix of the maximum lifetime. If this suffix is strictly
positive, it forces to hold in memory a large amount of instances that will not
be used.

Intuitively, the solution to this problem is to reduce the the maximum life-
time in such a way that the suffix become negative or null. To do this, one has
to modify the dependence functions of the ALPHA program, either by changing
the order of the evaluation of instances, or by introducing new variables to “de-
compose” (cut) the dependence functions associated with the original variable.

Both solutions can be easily formalized and correspond to transformations
used frequently when parallelizing sequential programs: the former is in fact
the reversing of loop traversal order (ascending to descending or the opposite),
whereas the second corresponds to the introduction of temporary variables.

The use of these transformations in the context of the ALPHA language is
discussed below. The input information used to compute transformation para-
meters is basically the same as for variable reduction, however, as it will be
shown later, reversing loop traversal order requires more information on a par-
ticular class of dependence functions.

6.1 Dependence decomposition

With the same notations as in the preceding section, let us consider a local
variable V whose associated lifetime is of the form d = ke, +d’ with e, > d' > 0.
After variable reduction, the array associated with V has k + 1 elements in its
first dimension (the first » — 1 coordinates have been removed,) thus forcing
all the instances calculated between instants z — (k 4+ 1)e, and z to be held in
memory, whereas only those calculated after z — (ke, + d') will be really used
at or after z.

By holding the “oldest” values in a new variable during the delay d’, we
can reduce the maximum lifetime of the instances of V: after a delay of ke,
their values will be assigned to the instances of the auxiliary variable Vi, thus
immediately freeing the corresponding memory locations.

From the ALPHA point view, this transformation is an extension of the ex-
pression decomposition, but cannot be easily expressed using existing trans-
formations. All the right-hand side occurrences of V such that the instance
effectively used can be “older” than ke, must be replaced by a conditional: if at
a given point z, the instance used was calculated before z — ke, , the occurrence
of V must replaced by the corresponding occurrence of Viyg; if not, it can be
leaved as is.

The auxiliary variable Vigyg 18 defined as follows:

e the domain of Vyyg is given by dom(Vaug) = dom(V)Ntransl(dom(V), ke, ),
where “transl” (D, v) is the translation of the domain D by the vector v.

e the type of Vgug 1s that of V,
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e the equation defining Vaug is Vaur = Vi(z — 2z — kep).

Such a definition introduces the problem of intra-iteration sequencing: there
is no straightforward ordering of assignments in the resulting loop body if both
the initial and the auxiliary variable were reduced using the corresponding mi-
nimal reduction functions. This problem is a part of the more general loop body
sequencing problem, which must be solved during code generation (possibly
by introducing additional scalar variables to break intra-iteration dependence
cycles).

Example 4: After the dependence decomposition has been applied to the
variable A, the ALPHA program initial SOR from section 3 has the following
form:

system initial_SOR_decomposed (a : {i,jli>=1;j>=1;512>=3j;512>=1} of real)
returns (res : {i,jli>=1;j>=1;512>=7;512>=i} of real);
var
A_aux : {k,i,jli>=1;k>=1;j>=2;510>=1i;25>=k;511>=j} of real;
A : {k,i,jli>=1;k>=0;j>=1;512>=1;25>=k;512>=j} of real;

let
A_aux = A.(k,i,j->k-1,1,3j);
A = case
{k,1,j1k=0} : a.(k,i,j->1,3);
{k,i,jli>=2;k>=1;j>=2;511>=i;25>=k;511>=j} :
(A_aux. (k,i,j->k,i-1,j) + A_aux.(k,i,j->k,i,j-1) +
A (k,i,j->k-1,i+1,3) + A.(k,i,j->k-1,i,j+1)) / 2.(k,i,j->) -
A (k,i,j->k-1,1i,3);
esac;
res = A.(i,j—>25,1i,3);
tel;

Without dependence decomposition, the minimal RF for A is characterized by
r = 1 and k& = 2 (see section 5). After applying dependence decomposition,
there is no lifetime longer than [1,0, 0] for any instance of A. Hence, the minimal
reduction function for A is now characterized by » = 1 and £ = 1, and the new C
language declaration of A is

float A[512][512];

The maximum lifetime of instances of Agyugz is [0, 1,0], hence the minimal RF
for Agug 1s given by » = 2 and k£ = 1, and the corresponding C declaration will

be
float A_aux[512];

If dependence decomposition was applied to the program partitioned SOR,
the new declarations of A and A_aux would be the same as for the program

www.manaraa.com



Memory-efficient data structures for systolic programs 17

initial SOR_decomposed, excepted for the width of array slices along the last
dimension.

In place of a three-dimensional array, we obtain now one two-dimensional
and one one-dimensional array, and the memory space required for the data
structures has been virtually reduced by a half (the size of A_aux represents less
than 0.2% of the space recovered by suppressing a part of the old 4 array.) m

6.2 Changing loop traversal order

This transformation i1s based on a change of basis leading to the modification
of the d’ suffix of the maximum lifetime d. As we suppose ke, < d < (k+ 1)e,,
initially the minimal reduction function for V is My = Mp41,0 My ,_10...0
M; 1. By applying the dependence decomposition it is possible to further limit
the necessary memory space, as the array associated with the auxiliary variable
Vauz can be reduced using the reduction function My, = Mkru,ru oM r,—10
...0 Mj 5 0 My 1 where rq is the position of the first nonnull coordinate of d’,
and k,, satisfies kq eqo = d' = (kyy — 1)er,.

The ! coordinate of the array associated with V' cannot be reduced to
less than k elements in any way, thus the further reduction of the memory
use depends on the reduction of the image factor of My, The d’ suffix being
strictly positive, its first nonnull coordinate d;. is also positive. Then if we apply
to the domain of V' a change of basis in which the sign of the coordinate rg is
reversed, the suffix d’ will become strictly negative in the new basis B’. The
change of basis is given by

B={(e1,e9,...,6r0,..r6n)— B = (e1,€a,...,—€ry,... ).

This change of basis can, however, have undesirable effects if applied wi-
thout precautions. If there are lifetimes t = (¢1,%q,...,t,) such that their ro—th
coordinates t,, satisfy t,, < —k,,, then after the above change of basis the new
dependences will generate longer lifetimes, thus requiring more memory space
than before the transformation.

So, the construction of the appropriate change of basis is subject to addi-
tional conditions: if for each dependence function D; such that there are life-
times t = (t1,%a,...,1n) generated by D; and satisfying ¢, = k, the inequality
—kyr, <1y, holds, then the application of the change of basis T" given by

T @ B={(e1,€2,...,6r5,-yen)— B =(e1,€2,...,—€ry, ... €n),

to the domain of the variable V' reduces the minimum total memory space requi-
red by the optimized arrays associated with V and with its auxiliary variable.

Example 5: The Gaussian elimination is a good example of application of
loop traversal order reversing. Consider the following ALPHA program:
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system GAUSS (a : {i,jli>=1;3>=1;20>=5;20>=1} of real;
b : {i]20>=1i;i>=1} of real)
returns (u : {i,j[20>=j;i>=1;j>=1i} of real;
x : {1120>=1i;i>=1} of real);

var
A : {k,i,jli>=1;k>=0;j>=1;j>=k;20>=1i;21>=j;20>=k} of real;
let
A = case
{k,1i,jlk=0;20>=j;j>=1} : a.(k,1,j->1,3);
{k,1,j1k=0;21=3} : b.(k,i,j->1);
{k,i,jlj>=k;k>=1;k=1;20>=k;21>=j} :
A (k,i,j->k-1,i,3) / A.(k,i,j->k-1,k,k);
{k,1i,jlk>=1;i>=k+1;j>=k;20>=1;21>=j} :
A (k,i,j->k-1,1i,3) -
A (k,i,j->k-1,i,k) / A.(k,i,j—>k-1,k,k) *
A.(k,i,j->k-1,k,3);
esac;
x = {il20>=1i;i>=1} : A.(i—>1,1i,21);
u = {i,jl20>=j;i>=1;j>=1} : A.(i,j->1,1,3);
tel;

By noting oo the undefined bounds (such as the extreme values in the dif-
fusions,) the four dependence functions on A: Dy = (k,4,j — k —1,4,5), Da =
(k,i,j—k—1,k,k), Ds=(k,i,j —k—1,k,j)and Dy = (k,i,j — k—1,4,k)

generate the following lifetimes:

e Dy:[1,0,0],

e D5: [1,0,0] through [1, 00, oo],
e Ds: [1,0,0] through [1, 00, 0],
e Dy: [1,0,0] through [1,0,5c].

d equals [1,00,00] and the minimal reduction function for A is given by cho-
sing r = 1 and & = 2. As the requirements for reversing loop traversal order
are clearly satisfied, we can directly apply the change of basis (e, ez, e3) —
(e1,—e3,e3). The new program is

system GAUSS_new
(a : {i,jlj>=1;1i>=1;20>=1i;20>=j} of real;
b : {i]20>=1i;i>=1} of real)
returns (u : {i,j[20>=j;i>=1;j>=1i} of real;
x : {1120>=1i;i>=1} of real);
var
A : {k,i,jlo>=i+1;k>=0;j>=1;j>=k;i+20>=0;21>=j;20>=k} of real;
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let
A = case
{k,1i,jlk=0;20>=j;j>=1} : a.(k,i,j->-1,3j);
{k,i,jlk=0;21=§} : b.(k,i,j->-i);
{k,i,jlj>=k;k>=1;0=k+i;20>=k;21>=j} :
A.(k,i,j->k-1,1,3) / A.(k,i,j->k-1,-k,k);
{k,1i,jlk>=1;0>=k+i+1;j>=k;i+20>=0;21>=31} :
A (k,i,j->k-1,1,3) -
A.(k,i,j->k-1,1,k) / A.(k,i,j->k-1,-k,k) * A.(k,i,j->k-1,-k,]);
esac;
x = {il20>=1i;i>=1} : A.(i—>1i,-1,21);
u = {i,jl20>=j;i>=1;3j>=1} : A.(1,j->1,-1,3);
tel;
The new dependence functions are now Dj = (k,4,j — k — 1,4,j), D}y =

(k,é,j — k—1,—k, k), Dy = (k,i,j — k—1,—k,j) and D} = (k,i,j —
k —1,i,k). Thus, the new maximum lifetime d is [1, 0, oo] instead of [1, 0o, >0].

Although one could decompose the dependences at this point, it can be easily
seen that once again we can apply a change of basis, as the program GAUSS new
satisfies the requirements for reversing loop traversal order. After this second
change of basis, defined by (ey, €2, e3) — (e1, €2, —e3) the maximum lifetime d
will be bounded by [1,0,0], thus suppressing the need for dependence decom-
position. [

7 Current state and evolution

An experimental ALPHA compiler, called CFC (Control Flow Compiler) is cur-
rently being designed. It is subdivided into two major modules: the data struc-
tures generator, and the control structures (code) generator. In its current form,
the data structures generator consists of a set of simple tools, integrated into the
ALPHA du Centaur environment. These tools are intended to verify the appli-
cability of the source-to-source transformations, to generate unoptimized arrays
associated with local variables, and to apply variable reduction according to the
results of the dependence test.

The analysis stage determines the maximum and minimum lifetimes of ins-
tances of a given variable, and performs an analysis of this lifetime information.
In particular, it identifies the partitioning relations. Calculating minimum life-
times in addition to the maximum lifetime appeared very useful when modifying
loop traversal order: although minimum lifetimes do not always match the as-
sumptions from previous section, in practice it appeared to be the case for a
large number of problems, justifying the shortcut.

The lifetime calculation algorithm is of linear complexity and is coded in
Lisp, whereas all other parts of the data structure generator were implemented
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as sets of semantical rules and compiled into Prolog programs using Centaur’s
semantics-oriented subsystem called TYPOL.

The forthcoming extensions of the prototype generator consist of a built-in
dependence decomposition transformation (by now, it has to be applied ma-
nually,) and of the automation of the complete generation chain. Also, an adap-
tation of the generator to shared-memory computers is being investigated.

The data structure generator is only a part of the ALPHA language compiler
for regular distributed-memory computers. As such, it will be integrated in the
near future into the complete compiling chain, still under development.

8 Discussion

Very few work seems to be currently done on the generation of data structures
from systolic programs. There is a project aimed at the generation of imperative
parallel programs from systolic ones, managed by Dr. Megson at the University
of Newcastle upon Tyne (Great Britain,) but to date no information has been
released on it. Nevertheless, this topic is related to some of the parallelization
techniques introduced recently for the FORTRAN programs, such as the ones
proposed by the PTRAN team at IBM ([Alle88]), and by Feautrier and Werth
([RaFe91]). In these approaches one first generates a single-assignment program
from the input FORTRAN code, then one searches for a more efficient memory
utilization scheme.

In PTRAN, a shared-memory model with dynamical loop scheduling is used,
thus requiring the number of loop-carried dependences to be very low. In the
approach of Feautrier and Werth, the target is a distributed-memory computer,
whose exact characteristics are hidden using the concept of virtual processors.
Remote memory reads are allowed, requiring global synchronization (e.g., a
sequential loop) to ensure dependence preservation.

In such a context it is necessary to take very conservative assumptions when
optimizing expanded data structures (on an example program, Feautrier reports
a fourfold increase in memory requirements, when compared with the initial se-
quential program.) Also, an in-depth analysis of the program dependences must
be performed before generating the single-assignment intermediate program. Fi-
nally, in both of the above-mentioned papers a large part of the research seems
to be devoted to the definition of program representations used to make depen-
dence analysis and program rewriting easier.

In our approach, no remote memory accesses are allowed, restricting inter-
processor dependences are preserved by communication operations. Also, the
mapping of iterations to the target topology is given in the input program, re-
quiring neither runtime overhead nor complex mapping functions. Eventually,
the complexity of the reduction transformation is very low, as its definition is
given in terms of lexicographical inequalities. The efficiency of the variable re-
duction is close to the optimizations one could perform if the target program

www.manaraa.com



Memory-efficient data structures for systolic programs 21

was sequential: the only limitations come form the fact that the variable reduc-
tion is performed on a global basis, thus ignoring additional optimizations local
to some processors.

9 Conclusion

The three optimization methods presented in this paper allow very memory-
efficient data structures to be obtained when generating imperative programs
from systolic specifications. They will be used in the complete ALPHA compiler
for regular distributed-memory computers, permitting to expect (in long-term
and for a class of problems) mathematical specifications to be a programming
language for these architectures.

The methods presented in this paper fully benefit from the major characte-
ristics of the ALPHA language: powerful theoretical basis, declarative semantics,
and local, regular dependence functions. The characterization of the target ar-
chitectures, although seeming restrictive, is very useful in defining optimizing
transformations which remain realistic for the real-life applications thanks to
their low complexity. The major drawback of the approach is that when redu-
cing memory requirements, additional constraints on instruction sequencing are
introduced, thus increasing the complexity of the code generation process.
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